Abstract
Fiber-based techniques make it possible to implant a miniaturized and flexible surface plasmon resonance (SPR) sensor into the human body for glucose detection. However, the miniaturization of fiber SPR sensors results in low sensitivity compared with traditional prism-type SPR sensors due to limited sensing area. In this paper, we proposed a D-shaped fiber SPR sensor with a composite nanostructure of molybdenum disulfide (MoS2)-graphene to improve the sensor sensitivity. Compared with the traditional cylindrical fiber, the planar sensing area on the side-polished fiber makes it easier to modify two-dimensional materials. Chemical vapor deposition (CVD) graphene and CVD MoS2 were modified on the sensor surface to obtain the MoS2-graphene composite nanostructure. π-π stacking interactions were used to modify pyrene-1-boronic acid (PBA) on the graphene. The excellent photoelectric properties of the MoS2-graphene composite nanostructure and the ability of PBA to specifically bind glucose molecules improved the glucose detection performance of the SPR sensor. The results show that specific detection of glucose was realized and that the highest sensitivity was achieved with three-layer MoS2 and monolayer graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.