Abstract

Group B streptococcus (GBS) or Streptococcus agalactiae, is an opportunistic pathogen causing a wide range of infections like pneumonia, sepsis, and meningitis in newborn, pregnant women and adults. While this bacterium has adapted well to asymptomatic colonization of adult humans, it still remains a potentially devastating pathogen to susceptible infants. Advances in molecular techniques and refinement of in vitro and in vivo model systems have elucidated key elements of the pathogenic process, from initial attachment to the maternal vaginal epithelium to penetration of the newborn blood-brain barrier. Still, the formidable array of GBS virulence factors makes this bacterium at the forefront of neonatal pathogens. The involvement of bacterial components in the host-pathogen interaction of GBS pathogenesis and its related diseases is not clearly understood. In this study we demonstrated the role of a 39kDa factor from GBS which plays an important role in the process of its invasion. We found a homogeneous 39kDa factor from the cytosol of GBS after following a combination of sequential purification steps involving molecular sieving and ion exchange chromatography using ACTA-FPLC system. Its N-terminal sequence showed a homology with xenobiotic response element type transcriptional regulator protein, a 40kDa protein of Streptococcus. This factor leads to inhibition of GBS invasion in HeLa and A549 cells. This protein also showed sensitivity and specific cross reactivity with the antibodies raised against it in New Zealand white rabbits by western immunoblotting. This inhibitory factor was further confirmed tolerant for its cytotoxicity. These results add a novel aspect to bacterial pathogenesis where bacteria's own intracellular protein component can act as a potential therapeutic candidate by decreasing the severity of disease thus promoting its invasion inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.