Abstract

A cytolytic assay that could detect palytoxin and its congeners has been developed by the use of an established cell line grown as monolayer to replace the current hemolytic method. We used MCF-7 cells and cytolysis was measured by the release of cytosolic lactate dehydrogenase (LDH) in the buffer added to treated cells (culture supernatant). A dose-dependent increase in LDH activity in culture supernatants was detected when MCF-7 cells were exposed to palytoxin and its analogue ostreocin D. The cytolytic response induced by palytoxin and ostreocin D was specific for this group of compounds, acting on Na +/K +-ATPase, as it was prevented when cells were preincubated with ouabain. The specificity of our assay for palytoxin and its congeners was confirmed by the finding that cytolysis was not detected when MCF-7 cells were exposed to unrelated toxins such as maitotoxin, tetrodotoxin, okadaic acid, and yessotoxin, even in the case of compounds that elicit cytotoxic responses under our experimental conditions. Using extracts from biological materials after spiking with the palytoxin standard, we found a good correlation between palytoxin levels measured by our cytolytic assay and the expected values. Our cytolytic assay detected palytoxin in naturally contaminated materials, but estimates were significantly higher than the palytoxin contents determined by LC–MS, indicating that naturally contaminated materials contain biologically active palytoxin congeners. We conclude that our cytolytic assay based on the use of MCF-7 cell monolayers is a viable alternative to animal-based methods for the determination of palytoxin and its congeners in contaminated materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.