Abstract

The cytochrome P450 superfamily (CYP450) is one of the largest protein families in plants, and its members play diverse roles in primary and secondary metabolic biosynthesis. In this study, the CYP450 family gene IbCYP82D47 was cloned from the high carotenoid line HVB-3 of sweet potato (Ipomoea batatas). The IbCYP82D47 protein harbored two transmembrane domains and dynamically localized between plastid stroma and membrane. Overexpression of IbCYP82D47 not only increased total carotenoid, lutein, zeaxanthin and violaxanthin contents by 32.2–48.0%, 10.5–13.3%, 40.2–136% and 82.4–106%, respectively, but also increased the number of carotenoid globules in sweet potato storage roots. Furthermore, genes associated with the carotenoid biosynthesis (IbDXS, IbPSY, IbLCYE, IbBCH, IbZEP) were upregulated in transgenic sweet potato. In addition, IbCYP82D47 physically interacts with geranylgeranyl diphosphate synthase 12 (IbGGPPS12). Our findings suggest that IbCYP82D47 increases carotenoid contents by interacting with the carotenoid biosynthesis related protein IbGGPPS12, and influencing the expressions of carotenoid biosynthesis related genes in transgenic sweet potato.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call