Abstract

We present a variant of the time-orbiting potential trap suitable for Bose-Einstein condensate atom interferometers, which provides weak, cylindrically symmetric confinement as well as support for the atoms against gravity. This trapping configuration is well-suited for the implementation of a compact atom interferometer based gyroscope. The trap is made up of six coils, which were produced using photolithographic techniques and take up a modest volume of approximately 1 cubic inch inside a vacuum chamber. The trapping frequencies and thermal characteristics of the trap are presented, showing cylindrical symmetry and scalability of the trapping frequencies from 1 Hz to 8 Hz in the symmetry plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.