Abstract

2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD), a prototype of environmental halogenated aromatic hydrocarbons, induces a rapid reduction in steady state aryl hydrocarbon receptor (AhR). Here, we analyzed the biochemical pathway and function of the downregulation. Our results reveal that TCDD downregulates the AhR protein by shortening the halflife of AhR. The TCDD-induced degradation of AhR is inhibited by MG132, a potent inhibitor of the 26S proteasome, indicating the ubiquitin-26S proteasome mediated proteolysis as a mechanism for the degradation of AhR. Furthermore, inhibition of protein synthesis by cycloheximide blocks the degradation of AhR by TCDD, suggesting a labile factor in controlling the stability of ligand-activated AhR (hence, designated as AhR degradation promoting factor, or ADPF). Analyses of nuclear AhR demonstrated that cycloheximide increases nuclear AhR protein and functional AhR/Arnt DNA-binding complex, resulting in superinduction of CYP1A1. Lastly, genetic analyses by using AhR- or Arnt-defective variant cells demonstrate that superinduction by cycloheximide requires the transcription activation (TA) domain of AhR, implicating the TA domain in the control of AhR turnover by ADPF. These findings provide new insights into the mechanism by which TCDD-activated AhR is regulated in nucleus through the 26S proteasome protein degradation pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.