Abstract

Given a primitive stochastic matrix, we provide an upper bound on the moduli of its non-Perron eigenvalues. The bound is given in terms of the weights of the cycles in the directed graph associated with the matrix. The bound is attainable in general, and we characterize a special case of equality when the stochastic matrix has a positive row. Applications to Leslie matrices and to Google-type matrices are also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.