Abstract

Cyber–physical systems involve the creation, continuous updating, and monitoring of virtual replicas that closely mirror their physical counterparts. These virtual representations are fed by real-time data from sensors, Internet of Things (IoT) devices, and other sources, enabling a dynamic and accurate reflection of the state of the physical system. This emphasizes the importance of data synchronization, visualization, and interaction within virtual environments as a means to improve decision-making, training, maintenance, and overall operational efficiency. This paper presents a novel approach to a cyber–physical system that integrates virtual reality (VR)-based digital twins and 3D SCADA in the context of Industry 4.0 for the monitoring and optimization of an olive mill. The methodology leverages virtual reality to create a digital twin that enables immersive data-driven simulations for olive mill monitoring. The proposed CPS takes data from the physical environment through the existing sensors and measurement elements in the olive mill, concentrates them, and exposes them to the virtual environment through the Open Platform Communication United Architecture (OPC-UA) protocol, thus establishing bidirectional and real-time communication. Furthermore, in the proposed virtual environment, the digital twin is interfaced with the 3D SCADA system, allowing it to create virtual models of the process. This innovative approach has the potential to revolutionize the olive oil industry by improving operational efficiency, product quality, and sustainability while optimizing maintenance practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call