Abstract

Phishing attacks pose a significant threat to online security, utilizing fake websites to steal sensitive user information. Deep learning techniques, particularly convolutional neural networks (CNNs), have emerged as promising tools for detecting phishing attacks. However, traditional CNN-based image classification methods face limitations in effectively identifying fake pages. To address this challenge, we propose an image-based coding approach for detecting phishing attacks using a CNN-LSTM hybrid model. This approach combines SMOTE, an enhanced GAN based on the Autoencoder network, and swarm intelligence algorithms to balance the dataset, select informative features, and generate grayscale images. Experiments on three benchmark datasets demonstrate that the proposed method achieves superior accuracy, precision, and sensitivity compared to other techniques, effectively identifying phishing attacks and enhancing online security.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.