Abstract

This study proposes a novel integration of a municipal wastewater treatment facility (WWTF) with a cyanobacterial nutrient removal process for sidestream wastewater treatment. A life cycle assessment (LCA) approach was used to determine the effectiveness and environmental performances of the integrated system. The LCA is populated by models of wastewater process engineering, material balance, cyanobacterial growth, and kinetics of anaerobic digestion. The cyanobacteria growth model incorporates chlorophyll synthesis, nitrogen uptake, photosynthesis, centrate inhibition, and competition for nitrogen between cyanobacteria and nitrifiers. Modeling results are validated against experiments with Synechocystis sp. PCC6803 grown in sludge centrate. With a maximum specific growth rate of 1.09 day−1, the nitrogen removal rate of the proposed WWTF would be increased by 15% when compared to the baseline wastewater treatment facility with a biological nutrient removal process. Incorporating the cyanobacterial nutrient removal process as the sidestream wastewater treatment of a conventional activated sludge process reduces the total nitrogen concentrations discharged from the WWTF from 25.9 to 15.2 mg 1−1. Methane yield was found to be increased by 4% of the baseline value when cyanobacterial biomass was co-digested with the activated sludge. Life cycle energy use and greenhouse gas emissions were found to be reduced by 8% and 17%, respectively, relative to a baseline wastewater treatment facility. Overall, a cyanobacteria-based sidestream municipal wastewater treatment process could be an effective and environmentally sustainable biological nutrient removal process in the future addressing the water-energy-food nexus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.