Abstract

In the cyanobacterium Synechococcus elongatus PCC 7942, the products of three genes (kaiA, kaiB, and kaiC) have been identified as essential components of the circadian clock. Recently, we reconstituted the self-sustainable circadian oscillation of the KaiC phosphorylation state by incubating purified KaiC with KaiA, KaiB, and ATP. This in vitro oscillation persisted for at least three cycles and the period was compensated against temperature changes. Period lengths observed in vivo in various kaiC mutants were consistent with those measured using in vitro mixtures containing the respective mutant KaiC proteins. These results demonstrate that the oscillation of KaiC phosphorylation is the primary pacemaker of the cyanobacterial circadian clock and reveal a novel function of proteins as timing devices that govern cellular metabolism. We further analyzed four aspects of the KaiC phosphorylation cycle in vitro: the interactions among KaiA, KaiB, and KaiC; the functions of the two phosphorylation sites, the energetics that determine the circadian period, and the mechanisms that synchronize the components of the Kai oscillator. From these analyses, we have proposed a circadian program consisting of the three proteins that keeps biological time in a living cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.