Abstract
The two-dimensional modal logic of Davies and Humberstone (1980) [3] is an important aid to our understanding the relationship between actuality, necessity and a priori knowability. I show how a cut-free hypersequent calculus for 2D modal logic not only captures the logic precisely, but may be used to address issues in the epistemology and metaphysics of our modal concepts. I will explain how the use of our concepts motivates the inference rules of the sequent calculus, and then show that the completeness of the calculus for Davies–Humberstone models explains why those concepts have the structure described by those models. The result is yet another application of the completeness theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.