Abstract

We describe an approach to implementing a wide-range of concurrency paradigms in high-level (symbolic) programming languages. The focus of our discussion is STING, a dialect of Scheme, that supports lightweight threads of control and virtual processors as first-class objects. Given the significant degree to which the behavior of these objects may be customized, we can easily express a variety of concurrency paradigms and linguistic structures within a common framework without loss of efficiency. Unlike parallel systems that rely on operating system services for managing concurrency, STING implements concurrency management entirely in terms of Scheme objects and procedures. It, therefore, permits users to optimize the runtime behavior of their applications without requiring knowledge of the underlying runtime system. This paper concentrates on (a) the implications of the design for building asynchronous concurrency structures, (b) organizing large-scale concurrent computations, and (c) implementing robust programming environments for symbolic computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.