Abstract

ObjectivesThe underlying mechanisms behind the therapeutic and side effects of deep brain stimulation (DBS) need further investigation. The utilization of transgenic mouse lines is a suitable approach to better understand the cellular and network effects of DBS. However, not many bilateral DBS studies have been conducted in mice. This might be due to a lack of commercially available bilateral DBS constructs.Materials and MethodsWe developed an approach to perform repetitive long‐term DBS in freely moving mice. In this study, we implanted an in‐house custom‐made DBS construct containing two bipolar concentric electrodes to target the subthalamic nucleus (STN) bilaterally. Subsequently, we stimulated half of the animals with clinically relevant parameters three to five times a week with a duration of 20 min for ten weeks. Several behavioral tests were conducted of which the open field test (OFT) is shown to validate the reliability of this electrode construct and implantation method. Furthermore, we performed fiber photometry measurements to show the acute effect of STN‐DBS on serotonin network activity in the dorsal raphe nucleus.ResultsRepetitive DBS and long‐term behavioral testing were performed without complications. STN‐DBS resulted in an increase of the distance traveled in the OFT and a reduction of calcium levels in serotonergic neurons of the dorsal raphe nucleus. None of the mice had lost their electrodes and postmortem evaluation of the tissue showed accurate targeting of the STN without excessive gliosis.ConclusionThe DBS electrode construct and implantation method described can be used for long‐term DBS studies to further investigate the mechanisms underlying DBS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call