Abstract

We present a new matrix-free method for the computation of negative curvature directions based on the eigenstructure of minimal-memory BFGS matrices. We determine via simple formulas the eigenvalues of these matrices and we compute the desirable eigenvectors by explicit forms. Consequently, a negative curvature direction is computed in such a way that avoids the storage and the factorization of any matrix. We propose a modification of the L-BFGS method in which no information is kept from old iterations, so that memory requirements are minimal. The proposed algorithm incorporates a curvilinear path and a linesearch procedure, which combines two search directions; a memoryless quasi-Newton direction and a direction of negative curvature. Results of numerical experiments for large scale problems are also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call