Abstract
AbstractA 48 degrees‐of‐freedom quadrilateral element, including the effect of both material and geometric nonlinearities, is formulated and appropriate numerical procedures are adopted for the development of a systematic and efficient approach for the static nonlinear analysis of general shell structures. The element surface is described by a variable‐order polynomial in curvilinear co‐ordinates. The displacement functions are described by bicubic Hermitian polynomials in curvilinear co‐ordinates. Without being confined to the assumption of axisymmetry, this formulation allows for the treatment of shells with a more general shape and with a complex spread of plastic zones. In the formulation for geometric nonlinearity, the total Lagrangian approach is adopted. Only small strains and small rotations are allowed. In the formulation for plastic deformation, the concept of a layered element model is used. In the inelastic range, the material is assumed to obey the Von Mises yield criterion and the Prandtl–Reuss flow rule. A tangential stiffness formulation is combined with the modified Newton–Raphson iteration method for the solution of nonlinear problems. A systematic choice of examples ranging from fiat plates to cylindrical panels and to spherical caps is solved and compared with available solutions to evaluate the recommended formulations and procedures in terms of their accuracy and efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.