Abstract

We consider a curve flow for maps from a real line into a compact almost Hermitian manifold, which is governed by a third order nonlinear dispersive equation. This article shows short-time existence of a solution to the initial value problem for the equation. The difficulty comes from the lack of the Kahler condition on the target manifold, since the covariant derivative of the almost complex structure causes a loss of one derivative in our equation and thus the classical energy method breaks down in general. In the present article, we can overcome the difficulty by constructing a gauge transformation on the pull-back bundle for the map to eliminate the derivative loss essentially, which is based on the local smoothing effect of third order dispersive equations on the real line.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.