Abstract

Max-plus methods have been explored for solution of first-order, nonlinear Hamilton-Jacobi-Bellman partial differential equations (HJB PDEs) and corresponding nonlinear control problems. These methods exploit the max-plus linearity of the associated semigroups. Although these methods provide advantages, they still suffer from the curse-of-dimensionality. Here we consider HJB PDEs where the Hamiltonian takes the form of a (pointwise) maximum of linear/quadratic forms. We obtain a numerical method not subject to the curse-of-dimensionality. The method is based on construction of the dual-space semigroup corresponding to the HJB PDE. This dual-space semigroup is constructed from the dual-space semigroups corresponding to the constituent Hamiltonians.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.