Abstract

A simplified arc model based on the integral method is used to study the arc behavior in a supersonic nozzle. Emphasis is placed on the energy balance of the overall arc, which extends to the arc thennal boundary. Similarity rules for aerodynamic and electrical quantities are established, and a quantitative definition of current zero period is given. Computations have been done for two nozzle geometries. The nozzle geometry plays the role of shaping the arc, thereby affecting the axial electric field distribution. Performance curves in terms of the critical rate of rise of recovery voltage (rrrv)c and di/dt at current zero are established. It has been found that (rrrv)c can be seriously affected by the distortion of the current waveform near current zero due to arc-circuit interaction. When experimentally measured current waveform is used as an input, a good quantitative agreement is obtained for the Liverpool orifice arc [1] between theory and experimental results. A satisfactory agreement has also been achieved for the axial electric field distribution without adding a turbulence term into the energy equation. The limitations of the present arc model is also discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.