Abstract

AbstractWe present a new numerical method for the solution of the forward problem of electrical impedance tomography (EIT) with the shunt model. Given a mesh over the EIT region, we discretize directly the conditions on the current density in equilibrium, and solve the resulting system of linear equations for the amount of current flowing through each side of every element. Afterwards, the distribution of current density and potential are reconstructed. Results of simulations on both 2D and 3D models indicate that the new method gives comparable results to those of the traditional finite element method with linear elements.KeywordsElectrical impedance tomographyForward solverShunt model

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.