Abstract

This paper presents a model for graphene electrolyte-gated field-effect transistors (EGFETs) that incorporates the effects of the graphene-electrolyte interface and quantum capacitance of graphene. The model is validated using experimental data collected from fabricated graphene EGFETs and is employed to extract device parameters such as mobility, minimum carrier concentration, interface capacitance, contact resistance, and effective charged impurity concentration. The proposed graphene EGFET model accurately determines a number of properties necessary for circuit design, such as current-voltage characteristics, transconductance, output resistance, and intrinsic gain. The model can also be used to optimize the design of EGFETs. For example, simulated and experimental results show that avoiding the practice of partial channel passivation enhances the transconductance of graphene EGFETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.