Abstract

Ferrofluids are oil-based liquids containing magnetic particles that interact with magnetic fields without solidifying. Leveraging the exploration of new applications of these promising materials (such as in optics, medicine and engineering) requires high fidelity modeling and simulation capabilities in order to accurately explore ferrofluids in silico. While recent work addressed the macroscopic simulation of large-scale ferrofluids using smoothed-particle hydrodynamics (SPH), such simulations are computationally expensive. In their work, the Kelvin force model has been used to calculate interactions between different SPH particles. The application of this model results in a force pointing outwards with respect to the fluid surface causing significant levitation problems. This drawback limits the application of more advanced and efficient SPH frameworks such as divergence-free SPH (DFSPH) or implicit incompressible SPH (IISPH). In this contribution, we propose a current loop magnetic force model which enables the fast macroscopic simulation of ferrofluids. Our new force model results in a force term pointing inwards allowing for more stable and fast simulations of ferrofluids using DFSPH and IISPH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.