Abstract

In recent years, there has been growing interest in the near-infrared (NIR) fluorescence imaging of tau fibrils for the early diagnosis of Alzheimer's disease (AD). In order to develop a curcumin-based NIR fluorescent probe for tau fibrils, structural modification of the curcumin scaffold was attempted by combining the following rationales: the curcumin derivative should preserve its binding affinity to tau fibrils, and, upon binding to tau fibrils, the probe should show favorable fluorescence properties. To meet these requirements, we designed a novel curcumin scaffold with various aromatic substituents. Among the series, the curcumin derivative with a (4-dimethylamino-2,6-dimethoxy)phenyl moiety showed a significant change in its fluorescence properties (22.9-fold increase in quantum yield; Kd, 0.77 μM; λem, 620 nm; Φ, 0.32) after binding to tau fibrils. In addition, fluorescence imaging of tau-green fluorescent protein-transfected SHSY-5Y cells with confirmed that detected tau fibrils in live cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.