Abstract
Cuproptosis is a novel programmed cell death pathway that is initiated by direct binding of copper to lipoylated tricarboxylic acid (TCA) cycle proteins. Recent studies have demonstrated that cuproptosis-related genes regulate tumorigenesis. However, the potential role and clinical significance of cuproptosis-related long noncoding RNAs (lncRNAs) in hepatocellular carcinoma (HCC) have not been established. We performed a bioinformatics analyses of RNA-sequencing data of HCC patients extracted from The Cancer Genome Atlas (TCGA) dataset to identify and validate a cuproptosis-related lncRNA prognostic signature. Furthermore, we analyzed the clinical significance of the prognostic signature of cuproptosis-related lncRNA in predicting the immunotherapeutic efficacy and the status of the tumor immune microenvironment. The RNA-sequencing data, genomic mutations, and clinical information were downloaded for 374 HCC samples and 50 normal liver samples from TCGA-Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset. Co-expression analysis of Gene-lncRNA pairs with 49 known cuproptosis-related prognostic genes was used to define cuproptosis-related prognostic lncRNAs. We performed the LASSO algorithm and univariate and multivariate Cox regression analysis, respectively, to gradually identify the prognostic risk models of cuproptosis-related lncRNA based on the TCGA-LIHC dataset. Subsequently, the predictive performance of the model was evaluated using receiver operation characteristic (ROC) curves, Kaplan-Meier survival curves, and prognostic nomogram. The analysis of gene-lncRNA co-expression with 49 known cuproptosis-related genes identified 1359 cuproptosis-related lncRNAs in the TCGA-LIHC data set. A prognostic model was constructed with nine cuproptosis-related prognostic lncRNAs (AC007998.3, AC003086.1, AC009974.2, IQCH-AS1, LINC0256 1, AC105345.1, ZFPM2-AS1, AL353708.1 and WAC-AS1) using LASSO regression and Cox regression analyses. Risk scores were calculated for all HCC patient samples based on the four cuproptosis-related lncRNA prognostic models. All HCC patients were divided into high-risk and low-risk subgroups according to a 1:1 ratio column. The Kaplan-Meier survival curve analysis showed that the overall survival rate (OS) of the high-risk group patients was significantly lower than that of the low-risk group. The principal component analysis (PCA) confirmed that the prognostic lncRNA model accurately distinguished between high- and low-risk HCC patients. Furthermore, regression analysis as well as ROC curves confirmed the prognostic value of the risk score. A nomogram with risk scores and other clinicopathological characteristics was constructed. The nomogram accurately predicted the probability of 1-, 3-, and 5-year OS in HCC patients. Tumor mutation burden (TMB) scores were higher for high-risk patients than for low-risk patients. HCC patients in the low-risk group showed lower TIDE scores and greater sensitivity to antitumor drugs than those in the high-risk group. Tumor immune responses and tumor immune cell infiltration were significantly different between the high-risk and low-risk groups of patients with HCC. Our study identified a 9-cuproptosis-related lncRNA signature that accurately predicted prognosis, immunotherapeutic efficacy, and the status of the tumor immune microenvironment in HCC patients. Therefore, this cuproptosis-related lncRNA risk model is a potential prognostic biometric feature in HCC and shows high clinical value in identifying HCC patients who are potentially responsive to immunotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.