Abstract

Abstract A cumulus parameterization based on mass fluxes, convective-scale vertical velocities, and mesoscale effects has been incorporated in an atmospheric general circulation model (GCM). Most contemporary cumulus parameterizations are based on convective mass fluxes. This parameterization augments mass fluxes with convective-scale vertical velocities as a means of providing a method for incorporating cumulus microphysics using vertical velocities at physically appropriate (subgrid) scales. Convective-scale microphysics provides a key source of material for mesoscale circulations associated with deep convection, along with mesoscale in situ microphysical processes. The latter depend on simple, parameterized mesoscale dynamics. Consistent treatment of convection, microphysics, and radiation is crucial for modeling global-scale interactions involving clouds and radiation. Thermodynamic and hydrological aspects of this parameterization in integrations of the Geophysical Fluid Dynamics Laboratory SKYHI GCM...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call