Abstract

In practice, sensor precision degradation is ubiquitous and early detection of such a degradation is important for monitoring task. In this paper, a cumulative canonical correlation analysis (CCA) based sensor precision degradation detection method is presented in the Gaussian and non-Gaussian cases. At first, the fault sensitivity of the original CCA method to sensor precision degradation is theoretically analyzed. Then, the cumulative CCA-based method is proposed and delivers better fault detectability than the corresponding standard CCA-based method with respect to fault detection rate. For the non-Gaussian case, an efficient and practical applicable approach, referred as threshold learning approach, is proposed to set appropriate threshold based on available historical measurements. Finally, with the application to a real laboratorial continuous stirred tank heater plant, the feasibility and superiority of the proposed method are demonstrated by a comparison with the standard CCA-based and principal component analysis-based methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.