Abstract
Differential Evolution (DE) algorithm is known as robust, effective and highly efficient for solving the global optimization problems. In this chapter, a modified variant of Differential Evolution (DE) is proposed, named Cultivated Differential Evolution (CuDE) which is different from basic DE in two ways: 1) the selection of the base vector for mutation operation, 2) population generation for the next generation. The performance of the proposed algorithm is validated on a set of eight benchmark problems taken from literature and a real time molecular potential energy problem. The numerical results show that the proposed approach helps in formulating a better trade-off between convergence rate and efficiency. Also, it can be seen that the performance of DE is improved in terms of number of function evaluations, acceleration rate and mean error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.