Abstract

The training phase of the Continuous Space Language Model (CSLM) was implemented in the NVIDIA hardware/software architecture Compute Unified Device Architecture (CUDA). A detailed explanation of the CSLM algorithm is provided. Implementation was accomplished using a combination of CUBLAS library routines, NVIDIA NPP functions, and CUDA kernel calls on three different CUDA enabled devices of varying compute capability and a time savings over the traditional CPU approach demonstrated. The efficiency of the CUDA version of the open source implementation is analyzed and compared to that using the Intel Math Kernel Libraries (MKL) on a variety of CUDA enabled and multi-core CPU platforms. It is demonstrated that substantial performance benefit can be obtained using CUDA, even with nonoptimal code. Techniques for optimizing performance are then provided. Furthermore, an analysis is performed to determine the conditions in which the performance of CUDA exceeds that of the multi-core MKL realization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.