Abstract

We report the self-assembly of a monolayer metal-organic framework of Cu-benzenehexol (BHO) on a graphene/SiC substrate assisted by in situ Cu-catalyzed deprotonation reactions. The density functional theory calculations reveal that the free-standing framework is a semiconductor with a band gap of 0.485 eV. Interestingly, upon adsorption on the substrate, the Fermi level is up-shifted to the conduction band of the free-standing framework due to the n-doped graphene on SiC, while the other band structure features are largely preserved. The metallic nature corroborates the scanning tunneling microscopy images acquired near the Fermi level. This work demonstrates that the graphene substrate, which interacts weakly with the framework, can be used to tune the Fermi level of the metal-organic framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.