Abstract

Increasing the reactive oxygen species (ROS) content at the tumor site is one of the effective strategies to promote intracellular oxidative stress and improve therapeutic efficiency. Herein, an atomically precise cinnamaldehyde-derived metal-organic Cu(I) complex (denoted as DC-OD-Cu) was rationally constructed. DC-OD-Cu could preferentially accumulate in the mitochondria of HeLa cells due to the mitochondria-targeting ability of triphenylphosphine, which was accompanied by the generation of large amounts of highly toxic hydroxyl radicals (˙OH) via Cu(I)-mediated Fenton-like reactions. Meanwhile, greater ROS generation jointly results in mitochondrial damage under white LED light irradiation. Furthermore, the in vitro and in vivo results suggested that DC-OD-Cu possesses favorable cytotoxicity and inhibits tumor growth. We believe that this research might provide a controllable strategy to construct multifunctional metal organic complexes for ROS-involved CDT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.