Abstract

Microflora within cancer cells plays a pivotal role in promoting metastasis of cancer. However, contemporary anticancer research often overlooks the potential benefits of combining anticancer and antibacterial agents. Consequently, a metal-organic framework Cu-Cip with cuproptosis and antibacterial properties was synthesized for cancer therapy. To enhance the anticancer effect of the material, Mn2+ was loaded into Cu-Cip, yielding Mn@Cu-Cip. The fabricated material was characterized using single-crystal X-ray diffraction, PXRD, and FT-IR. By interacting with overexpressed H2O2 to produce ROS and accumulating Cu ions in cancer cells, MOFs exhibited excellent anticancer performance. Moreover, the material displayed the function of damaging Staphylococcus aureus and Escherichia coli, revealing the admirable antibacterial properties of the material. In addition, the antibacterial ability could inhibit tumor cell migration. The Cu-based MOF revealed promising applications in the field of tumor treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.