Abstract

Recent studies have suggested the central role of small airway destruction in the pathogenesis of COPD leading to further parenchymal destruction. This evidence has sparked the interest in in-vivo assessment of small airway disease overall at the early onset of the disease. The parametric response mapping (PRM) technique has been proposed to distinguish gas trapping due to small airway disease from low attenuation areas due to emphysema. Despite its success, the PRM technique shows some limitations that are precluding the interpretation of its results. The density value used to assess gas trapping highly depends on acquisition parameters, such as dose and reconstruction kernel, and changes in body size, that introduce inhomogeneous photon absorption patterns. In particular, many studies using PRM employ inspiratory and expiratory images that are obtained at different dose levels. Emphysema impact in early disease may be confounded with the gas trapping due to the noise introduced by differences in the acquisition during the PRM. In this work, we propose a CT harmonization technique to remove the nuisance factors to distinguish between small airway disease and emphysema. Our results show that the measurements based on CT harmonization provide an increase in the detection of both emphysema and airway disease, resulting in a statistically significant impact of both components and a better association with lung function measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.