Abstract

PurposeTo characterise the impact of Precise Image (PI) deep learning reconstruction algorithm on image quality, compared to filtered back-projection (FBP) and iDose4 iterative reconstruction for brain computed tomography (CT) phantom images. MethodsCatphan-600 phantom was acquired with an Incisive CT scanner using a dedicated brain protocol, at six different dose levels (volume computed tomography dose index (CTDIvol): 7/14/29/49/56/67 mGy). Images were reconstructed using FBP, levels 2/5 of iDose4, and PI algorithm (Sharper/Sharp/Standard/Smooth/Smoother). Image quality was assessed by evaluating CT numbers, image histograms, noise, image non-uniformity (NU), noise power spectrum, target transfer function, and detectability index. ResultsThe five PI levels did not significantly affect the mean CT number. For a given CTDIvol using Sharper-to-Smoother levels, the spatial resolution for all the investigated materials and the detectability index increased while the noise magnitude decreased, slightly affecting noise texture. For a fixed PI level increasing the CTDIvol the detectability index increased, the noise magnitude decreased. From 29 mGy, NU values converged within 1 Hounsfield Unit from each other without a substantial improvement at higher CTDIvol values. ConclusionsThe improved performances of intermediate PI levels in brain protocols compared to conventional algorithms seem to suggest a potential reduction of CTDIvol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call