Abstract

Recently, low earth orbit (LEO) satellites have been suggested as an promising solution for global coverage of 5G networks. However, long propagation delay makes obtained channel state information (CSI) (which is employed for efficient spectrum utilization) outdated before usage. Note that CSI is closely related to elevation angle and relative location. Although elevation angle and relative location could be estimated by terrestrial device position and LEO ephemeris, maintaining these two information requires high cost for most IoT devices. Due to regular and high-speed orbital movement of LEO, for an arbitrary terrestrial device, LEOs repeat the same behavioral pattern (e.g., satellite rise and satellite set) again and again. Satellite rise and set result in different temporal correlations in elevation angle and relative location. By the aid of the temporal correlations mentioned above, we proposed a CSI prediction scheme for satellite-terrestrial networks without terrestrial device position and LEO ephemeris. Simulation results show that our scheme has rather low prediction error under various LEO altitude/obit, terrestrial device location/mobility, ground environments, weather and elevation angle when handover.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.