Abstract

Large grain specimens with average grain size of 0.0127 m made from commercial purity titanium were subjected to a torsional cyclic strain at two different amplitudes: ±0.008 and =0.003. Fatigue damage was studied by scanning electron microscopy and crystal orientations were determined by X-ray diffraction and surface trace analysis. It was found that cyclic strain amplitude influenced the deformation mode and the nature of the macroscopic crack propagation. At high strain amplitudes the normal slip processes were observed and microcracking was observed on the (0001), and {1100} slip planes. The macroscopic crack propagation was dominated by the Stage I shear mode; however, some Stage II tensile mode propagation was observed after extensive Stage I propagation. At low strain amplitude twin plane cracking was observed on the {1011}, {1010}, and {1123} planes in addition to normal slip plane cracking, and the macroscopic crack propagation was dominated by the Stage II tensile mode. However, microscopic examination showed the macroscopic tensile mode cracks to be composed of microscopic shear mode cracks along slip planes and twin planes. At both low and high strain amplitudes cracking was observed on the {1120} plane which is neither a slip or twin plane in titanium. It is proposed that this cracking mode was a result of a dislocation reaction forming sessile dislocations on the {1120} plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.