Abstract

AbstractA crystallography-based method is presented for the critical appraisal of possible mechanisms that trigger the formation of secondary grains during directional solidification. The method permits an analysis of a large population of defects, while avoiding the pitfalls of the metallographic sectioning approach that is affected by dendrite stereology. Here, the nickel-base superalloy CMSX-4, an alloy commonly used for single crystal turbine blade applications, is studied. All secondary grains originate exclusively at the external surface and when the off-axial primary $$\langle 0\,0\,1\rangle$$ ⟨ 0 0 1 ⟩ crystal orientations are measured, are evident at both the converging and diverging dispositions of the single crystal primary dendrites without a noticeable bias. Almost all of the secondary grains have low misorientations, with an average misorientation between 5 to 15 deg. No systematic deviation between the individual $$\langle 0\,0\,1\rangle$$ ⟨ 0 0 1 ⟩ orientations of the secondary grain and the single crystal is observed. A significant twist contribution about an axis within ~ 30 deg from one of the secondary arms occurs when primary arms converge on the external surface, but both twist and tilt prevail for the diverging case. Both nucleation and buoyancy driven thermo-solutal convection can be eliminated as potential mechanisms. Thermo-mechanical deformation is deduced to be the most likely mechanism; deformation must originate in the vicinity of the primary dendrite tips. It is proposed that dendrite deflection arises primarily from the resistance encountered by the primary tips with the external surface during axial contraction in the presence of a dominant vertical thermal gradient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.