Abstract

We synthesized a unique layer structure of gallium phosphates containing zwitterionic-type templates under mild hydrothermal reactions. The zwitterionic-type templates, formed of long-alkyl-chain diamine cations and biphenyldicarboxylate anions, resided upright between adjacent layers, propping the interlayer distance up to 2.2 nm. For the first time, the mesoscale interlayer templates were sufficiently well-ordered to afford elucidation to the atomic-level. The mesolamellar (HDADD)2(BPDC)0.5[Ga3(OH)2(HPO4)4] (1; DADD = 1,12-diaminododecane, BPDC = 4,4'-biphenyldicarboxylate) was composed of inorganic layers built up exclusively with a unique type of heptameric unit which featured an unprecedented trimeric cluster of [Ga3(OH)2O12]. Unexpectedly, compound 1 possessed an unusual green afterglow. To interpret the interesting photoluminescence (PL) property, three other low-dimensional structures related to 1 were prepared as well. The data from PL and electron paramagnetic resonance indicated that the afterglow was mainly attributed to lattice defects and the orientations of BPDC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call