Abstract
A hardening response is often observed for shear-dominated large deformation of Carbon Fibre Reinforced Plastics (CFRP). This non-linear response is often modelled by fitting a strain hardening law against experimental stress-strain curves. Inspired by a crystal plasticity framework, a phenomenological model is developed to capture matrix shearing and fibre rotation of CFRP under finite strain. This phenomenological model is first verified by simple shear and transverse compression tests, followed by comprehensive validations against measured stress-strain responses of unidirectional (UD) and cross-ply composite laminates subjected to quasi-static loading. The analytical and finite element predictions of CFRP lamina under simple shear loading confirm that the initial yielding is governed by the shear yield strength of the matrix, while the hardening behaviour is dependent on the modulus and rotation of the carbon fibres. This model accurately predicts the non-linear behaviour of CFRP under off-axis loading without the need of an empirical curve-fitted strain hardening law.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Lightweight Materials and Manufacture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.