Abstract
The size of wireless systems is required to be reduced in many applications, such as ultra-low-power sensor nodes and wearable/implantable devices, where battery and crystal are the two main bottlenecks in system miniaturization. In recent years, battery-free radios based on wireless power transfer (WPT) have shown great potential in miniature wireless systems, while a reliable on-chip clock without a crystal remains a design challenge. Conventional methods utilized the RF WPT tone as the reference for clock generation, but the high RF frequency leads to high power consumption. In comparison, using a lower WPT frequency results in an antenna with a larger size. In this work, the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$2^{\mathrm{nd}}$ </tex-math></inline-formula> -order inter-modulation (IM2) component of the two RF WPT tones is extracted to lock an on-chip oscillator, providing a low-jitter PVT-robust clock. In this way, the wireless systems can benefit from: 1) The clock recovery circuits operate at a low IM2 frequency, reducing the power consumption. 2) The WPT can be set to a high RF frequency to minimize the antenna. Fabricated in 65 nm CMOS process, the proposed crystal-less clock generator takes a small area of 0.023 mm2 in a wireless system chip. Measured results show −92 dBc/Hz@10 kHz phase noise and 6.8 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula> power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.