Abstract

We consider a new model for the testing of untrusted quantum devices, consisting of a single polynomial time bounded quantum device interacting with a classical polynomial time verifier. In this model, we propose solutions to two tasks—a protocol for efficient classical verification that the untrusted device is “truly quantum” and a protocol for producing certifiable randomness from a single untrusted quantum device. Our solution relies on the existence of a new cryptographic primitive for constraining the power of an untrusted quantum device: post-quantum secure trapdoor claw-free functions that must satisfy an adaptive hardcore bit property. We show how to construct this primitive based on the hardness of the learning with errors (LWE) problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call