Abstract

Thermal noise is a limiting factor of interferometric gravitational wave detectors sensitivity in the low and intermediate frequency range. A concrete possibility for beating this limit, is represented by the development of a cryogenic last stage suspension to be integrated within a complex seismic isolation system. To this purpose a last stage payload prototype has been designed and built. It has been suspended within a dedicated cryostat with the same technique adopted for the VIRGO payload and making use of two thin wires in a cradle configuration to support a mirror made of silicon. The cooling strategy, the thermal behaviour and the system mechanical response have been deeply studied while a measurement characterization campaign has been performed both at room temperature and at cryogenic temperature. In this paper, the preliminary results obtained together with the first cooling down of the 300 kg overall mass payload at about 25 K, are reported. This study will play a driving role in the design of the third generation gravitational wave detector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.