Abstract

The yeast Saccharomyces cerevisiae has emerged as an ideal model system to study the dynamics of prion proteins which are responsible for a number of fatal neurodegenerative diseases in humans. Within an infected cell, prion proteins aggregate in complexes which may increase in size or be fragmented and are transmitted upon cell division. Recent work in yeast suggests that only aggregates below a critical size are transmitted efficiently. We formulate a continuous-time branching process model of a yeast colony under conditions of prion curing. We generalize previous approaches by providing an explicit formula approximating prion loss as influenced by both aggregate growth and size-dependent transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.