Abstract

In this study, the impact response and residual strength of a crumb rubber modified syntactic foam, which contained up to 20% by volume of crumb rubbers, were investigated. The foam had a hybrid microstructure bridging over several length scales. It was formed by dispersing hollow glass beads and crumb rubber particles into a microfiber and nanoclay filled epoxy matrix. Sandwich beam specimens were prepared using the hybrid foam as core and fiber reinforced epoxy as facings. A low velocity impact test using an instrumented drop tower impact machine was conducted on the sandwich beams and control beams made of the foam only. Four-point bending tests were conducted on the impact damaged specimens and control specimens without impact damage. The effect of the hybrid foam on the low velocity impact response and residual strength was evaluated based on the test results. The stress field interaction was evaluated using a finite element analysis. It was found that the rubberized syntactic foam possessed a higher capacity to dissipate impact energy and to retain bending strength. There was a positive composite action between the hollow glass bead particles and crumb rubber particles by means of stress field interaction and reduction in stress concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.