Abstract

Considerable effort has been directed at improving the power conversion efficiency of organic photovoltaics, using oxide/metal/oxide multilayers as transparent electrodes, because of their numerous advantages including lower sheet resistance, higher transmittance, and higher flexibility in comparison to typical indium tin oxides. However, to date, most organic photovoltaics based on oxide/metal/oxide electrodes exhibit a lower conversion efficiency than indium tin oxide-based organic photovoltaics, without any clarification. In this investigation, we identify crucial factors that influence the power conversion efficiency of oxide/metal/oxide-based organic photovoltaics to fully exploit the potential of these devices, based on the correlation between the optical cavity and the transmittance. For this purpose, we fabricate five sets ofinverted organic photovoltaics using poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) and [6,6]-Phenyl C71 butyric acid methyl ester-based active layers and ZnO/Ag/ZnO electrodes with top ZnO layers of varying thicknesses, with reference organic photovoltaics using indium tin oxides, on both rigid and flexible substrates. The highest power conversion efficiency of 8.71% and 7.53% is obtained from single-junction organic photovoltaics with 40/9/8-nm-thick ZnO/Ag/ZnO electrodes on each substrate, due to strong micro-cavity effects between the top and bottom Ag layers, despite the relatively low transmittance of the electrode. This result is supported by the relation between the electric-field intensity and the transmittance curves of the ZnO/Ag/ZnO/solution-based ZnO/active bulk optical stacks based on simulation results. Furthermore, flexible organic photovoltaics with the ZnO/Ag/ZnO electrodes demonstrate much better performance in mechanical bending tests in comparison to the performance of standard indium tin oxide-based organic photovoltaics, and the previously reported oxide/metal/oxide-based organic photovoltaics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.