Abstract

RationaleEndovascular interventions performed for atherosclerotic lesions trigger excessive vascular smooth muscle cell (SMC) proliferation leading to intimal hyperplasia. Our previous studies show that following endovascular injury, elevated TGF-β/Smad3 promotes SMC proliferation and intimal hyperplasia. Furthermore in cultured SMCs, elevated TGF-β/Smad3 increases the expression of several Wnt genes. Here we investigate a crosstalk between TGF-β/Smad3 and Wnt/β-catenin signaling and its role in SMC proliferation. Methods and resultsTo mimic TGF-β/Smad3 up-regulation in vivo, rat aortic SMCs were treated with Smad3-expressing adenovirus (AdSmad3) or AdGFP control followed by stimulation with TGF-β1 (or solvent). AdSmad3/TGF-β treatment up-regulated Wnt2b, Wnt4, Wnt5a, Wnt9a, and Wnt11 (confirmed by qRT-PCR and ELISA), and also increased β-catenin protein as detected by Western blotting. Blocking Wnt signaling using a Frizzled receptor inhibitor (Niclosamide) abolished TGF-β/Smad3-induced β-catenin stabilization. Increasing β-catenin through degradation inhibition (using SKL2001) or by adenoviral expression enhanced SMC proliferation. Furthermore, application of recombinant Wnt2b, Wnt4, Wnt5a, or Wnt9a, but not Wnt11, stabilized β-catenin and stimulated SMC proliferation as well. In addition, increased β-catenin was found in the neointima of injured rat carotid artery where TGF-β and Smad3 are known to be up-regulated. ConclusionsThese results suggest a novel mechanism whereby elevated TGF-β/Smad3 stimulates the secretion of canonical Wnts which in turn enhances SMC proliferation through β-catenin stabilization. This crosstalk between TGF-β/Smad3 and Wnt/β-catenin canonical pathways provides new insights into the pathophysiology of vascular SMCs linked to intimal hyperplasia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.