Abstract

Higher vertebrates use similar genetic tools to derive very different facial features. This diversity is believed to occur through temporal, spatial and species-specific changes in gene expression within cranial neural crest (NC) cells. These contribute to the facial skeleton and contain species-specific information that drives morphological variation. A few signaling molecules and transcription factors are known to play important roles in these processes, but little is known regarding the role of micro-RNAs (miRNAs). We have identified and compared all miRNAs expressed in cranial NC cells from three avian species (chicken, duck, and quail) before and after species-specific facial distinctions occur. We identified 170 differentially expressed miRNAs. These include thirty-five novel chicken orthologs of previously described miRNAs, and six avian-specific miRNAs. Five of these avian-specific miRNAs are conserved over 120 million years of avian evolution, from ratites to galliforms, and their predicted target mRNAs include many components of Wnt signaling. Previous work indicates that mRNA gene expression in NC cells is relatively static during stages when the beak acquires species-specific morphologies. However, miRNA expression is remarkably dynamic within this timeframe, suggesting that the timing of specific developmental transitions is altered in birds with different beak shapes. We evaluated one miRNA:mRNA target pair and found that the cell cycle regulator p27KIP1 is a likely target of miR-222 in frontonasal NC cells, and that the timing of this interaction correlates with the onset of phenotypic variation. Our comparative genomic approach is the first comprehensive analysis of miRNAs in the developing facial primordial, and in species-specific facial development.

Highlights

  • Vertebrates exhibit many species-specific morphological differences in craniofacial structures, those derived from the embryonic frontonasal prominence (FNP)

  • To identify the miRNAs that are expressed in the cranial neural crest we micro-dissected the FNP mesenchyme from 40 duck, quail and chicken embryos at two stages of embryonic development, HH20 and HH25 [3]

  • FNP mesenchyme consists of a pure population of neural crest cells, rather than a combination of neural crest and mesoderm [29]

Read more

Summary

Introduction

Vertebrates exhibit many species-specific morphological differences in craniofacial structures, those derived from the embryonic frontonasal prominence (FNP). The evolutionary conservation of early vertebrate facial development, coupled with the wide range of different adult beak shapes in birds, has made them an ideal model system for exploring the genetic differences that specify facial variation. In many cases these genetic differences pinpoint genes that are relevant to human development and craniofacial disorders [2,3,4,5]. Vertebrates appear to use essentially the same genetic ‘‘tool box’’ to build facial structures [2,4,5,11,12], and differences in morphology have been correlated with quantitative, temporal, and/or spatial changes in gene expression [13,14]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call