Abstract
Semantic segmentation, as the pixel level classification with dividing an image into multiple blocks based on the similarities and differences of categories (i.e., assigning each pixel in the image to a class label), is an important task in computer vision. Combining RGB and Depth information can improve the performance of semantic segmentation. However, there is still a problem of the way to deeply integrate RGB and Depth. In this paper, we propose a cross-modal feature fusion RGB-D semantic segmentation model based on ConvNeXt, which uses ConvNeXt as the skeleton network and embeds a cross-modal feature fusion module (CMFFM). The CMFFM designs feature channel-wise and spectral-wise fusion, which can realize the deeply feature fusion of RGB and Depth. The in-depth multi-modal feature fusion in multiple stages improves the performance of the model. Experiments are performed on the public dataset of SUN-RGBD, showing the best segmentation by our proposed model ConvNeXt-CMFFM with the highest mIoU score of 53.5% among the nine comparative models. The outstanding performance of ConvNeXt-CMFFM is also achieved on our self-built dataset of RICE-RGBD with the highest mIoU score and pixel accuracy among the three comparative datasets. The ablation experiment on our rice dataset shows that compared with ConvNeXt (without CMFFM), the mIoU score of ConvNext-CMFFM is increased from 71.5% to 74.8% and its pixel accuracy is increased from 86.2% to 88.3%, indicating the effectiveness of the added feature fusion module in improving segmentation performance. This study shows the feasibility of the practical application of the proposed model in agriculture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.