Abstract

Let G be a drawing of a graph with n vertices and \(e>4n\) edges, in which no two adjacent edges cross and any pair of independent edges cross at most once. According to the celebrated Crossing Lemma of Ajtai, Chvátal, Newborn, Szemerédi and Leighton, the number of crossings in G is at least \(c\,{e^3\over n^2}\), for a suitable constant \(c>0\). In a seminal paper, Székely generalized this result to multigraphs, establishing the lower bound \(c\,{e^3\over mn^2}\), where m denotes the maximum multiplicity of an edge in G. We get rid of the dependence on m by showing that, as in the original Crossing Lemma, the number of crossings is at least \(c'{e^3\over n^2}\) for some \(c'>0\), provided that the “lens” enclosed by every pair of parallel edges in G contains at least one vertex. This settles a conjecture of Bekos, Kaufmann, and Raftopoulou.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.