Abstract

Driven by their low thermal resistance and static transmittance to solar radiation, existing static clear windows are often considered the least-efficient components in the building envelope, driving the heating and cooling demands and compromising the thermal and visual comfort of building occupants. Hence, window retrofit technologies that utilize innovative coatings are critical for enhancing energy efficiency and indoor daylight quality in the existing building stock. In particular, dynamic photochromic window films that reversibly modulate solar gains responding to the abundance of ultraviolet radiation are promising but received little attention. In this paper, five commercial flexible photochromic window films were experimentally characterized, and their energy and daylighting performance were numerically and parametrically evaluated in a representative office with different window configurations and orientations across six representative cities with a diverse range of climates. This is one of the first works dealing with photochromic window films as a retrofit technology. The results show that the films exhibit excellent colour-rendering and cyclic stability with rapid switching/bleaching rates. In addition, annual energy savings in the 1% − 4% range were observed for low window-wall ratios, reaching 10% − 14% in cooling-dominated climates with lower latitudes using PC-1, which resulted in the most significant cooling energy savings. Although the film influenced the quantity of light, resulting in lower daylight autonomy, improvements in the useful daylight illuminance and significant reductions in discomfort glare levels were the major benefits of retrofitting existing double-glazed clear windows with the photochromic film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.