Abstract

Recently, more and more studies have begun to use deep learning to decode and classify EEG signals. The use of deep learning has led to an increase in the classification accuracy of motor imagery (MI), but the problem of taking a long time to calibrate in brain–computer interface (BCI) applications has not been solved. To address this problem, we propose a novel Riemannian geometry and deep domain adaptation network (RGDDANet) for MI classification. Specifically, two one-dimensional convolutions are designed to extract temporal and spatial features from the EEG signals, and then the spatial covariance matrices are utilized to map the extracted features to Riemannian manifolds for processing. In order to align the source and target features’ distributions on the Riemannian manifold, we propose a Symmetric Positive Definite (SPD) matrix mean discrepancy loss (SMMDL) to minimize the distance between two domains. To analyze the feasibility of the method, we conducted extensive experiments on BCIC IV 2a and BCIC IV 2b datasets, respectively, and the results showed that the proposed method achieved better performance than some state-of-the-art methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call